Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Metabolism ; 139: 155371, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36464036

RESUMEN

BACKGROUND: Hnf4a gene ablation in mouse liver causes hepatic steatosis, perturbs HDL structure and function and affects many pathways and genes related to glucose metabolism. Our aim here was to investigate the role of liver HNF4A in glucose homeostasis. METHODS: Serum and tissue samples were obtained from Alb-Cre;Hnf4afl/fl (H4LivKO) mice and their littermate Hnf4afl/fl controls. Fasting glucose and insulin, glucose tolerance, insulin tolerance and glucagon challenge tests were performed by standard procedures. Binding of HNF4A to DNA was assessed by chromatin immunoprecipitation assays. Gene expression analysis was performed by quantitative reverse transcription PCR. RESULTS: H4LivKO mice presented lower blood levels of fasting glucose, improved glucose tolerance, increased serum lactate levels and reduced response to glucagon challenge compared to their control littermates. Insulin signaling in the liver was reduced despite the increase in serum insulin levels. H4LivKO mice showed altered expression of genes involved in glycolysis, gluconeogenesis and glycogen metabolism in the liver. The expression of the gene encoding the glucagon receptor (Gcgr) was markedly reduced in H4LivKO liver and chromatin immunoprecipitation assays revealed specific and strong binding of HNF4A to the Gcgr promoter. H4LivKO mice presented increased amino acid concentration in the serum, α-cell hyperplasia and a dramatic increase in glucagon levels suggesting an impairment of the liver-α-cell axis. Glucose administration in the drinking water of H4LivKO mice resulted in an impressive extension of survival. The expression of several genes related to non-alcoholic fatty liver disease progression to more severe liver pathologies, including Mcp1, Gdf15, Igfbp-1 and Hmox1, was increased in H4LivKO mice as early as 6 weeks of age and this increased expression was sustained until the endpoint of the study. CONCLUSIONS: Our results reveal a novel role of liver HNF4A in controlling blood glucose levels via regulation of glucagon signaling. In combination with the steatotic phenotype, our results suggest that H4LivKO mice could serve as a valuable model for studying glucose homeostasis in the context of non-alcoholic fatty liver disease.


Asunto(s)
Glucosa , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Glucosa/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Glucagón/metabolismo , Ratones Noqueados , Hígado/metabolismo , Insulina/metabolismo , Factores Nucleares del Hepatocito/metabolismo , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo
2.
Open Res Eur ; 3: 55, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38689633

RESUMEN

Soft skills are the elementary management, personal, and interpersonal abilities that are vital for an individual to be efficient at workplace or in their personal life. Each work place requires different set of soft skills. Thus, in addition to scientific/technical skills that are easier to access within a short time frame, several key soft skills are essential for the success of a researcher in today's international work environment. In this paper, the trainees and trainers of the EU-CardioRNA COST Action CA17129 training school on soft skills present basic and advanced soft skills for early career researchers. Here, we particularly emphasize on the importance of transferable and presentation skills, ethics, literature reading and reviewing, research protocol and grant writing, networking, and career opportunities for researchers. All these skills are vital but are often overlooked by some scholars. We also provide tips to ace in aforementioned skills that are crucial in a day-to-day life of early and late career researchers in academia and industry.

3.
Biochem Biophys Res Commun ; 622: 108-114, 2022 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-35843089

RESUMEN

Apolipoprotein A-I (apoA-I), the main protein component of High-Density Lipoprotein (HDL), is modified in plasma and the arterial wall by various enzymes. Myeloperoxidase (MPO), a leukocyte-derived peroxidase, is highly expressed during inflammation and associates with HDL reducing its functionality and contributing to atherosclerosis. In the present study we sought to explore further the effect of MPO on HDL structure and functionality in vivo using adenovirus-mediated gene transfer of human MPO combined with human apoA-I forms containing substitutions at MPO-sensitive sites or wild type apoA-I. We found that overexpression of MPO in mice significantly increased plasma apoA-I and HDL levels without affecting the expression of genes involved in HDL biogenesis or catabolism in the liver. Overexpression of MPO in the liver reduced the expression of pro-inflammatory genes and increased or did not affect the expression of anti-inflammatory genes suggesting that MPO had no toxic effects in this organ. In the plasma of mice overexpressing MPO, no significant alterations in HDL size or electrophoretic mobility was observed with the exception of mice expressing apoA-I (M148A) which showed enriched pre-ß relative to α HDL particles, suggesting that the apoA-I (M148A) mutation may interfere with HDL remodelling. Overexpression of MPO was associated with reduced anti-oxidant capacity of HDL particles in all mice. Interestingly, HDL particles bearing apoA-I (Y192A) showed enhanced ABCA1-dependent cholesterol efflux from macrophages which was not affected by MPO and these mice had reduced levels of LDL-c. These findings provide new insights on the role of specific amino acid residues of apoA-I in HDL structure and function following modification by MPO. This knowledge may facilitate the development of novel therapies based on improved HDL forms for patients with chronic diseases that are characterized by dysfunctional HDL.


Asunto(s)
Infecciones por Adenoviridae , Apolipoproteína A-I , Transportador 1 de Casete de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenoviridae/genética , Adenoviridae/metabolismo , Animales , Apolipoproteína A-I/metabolismo , Humanos , Lipoproteínas HDL , Ratones , Peroxidasa/genética , Peroxidasa/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-34973414

RESUMEN

Ablation of the gene encoding the nuclear receptor Hepatocyte Nuclear Factor 4a (Hnf4a) in the liver strongly affects HDL concentration, structure and functionality but the role of this receptor in the intestine, the second organ contributing to serum HDL levels, has been overlooked. In the present study we show that mice with intestine-specific ablation of Hnf4a (H4IntKO) had undetectable levels of ΗΝF4A in ileum, proximal and distal colon but normal expression in liver. H4IntKO mice presented normal serum lipid levels, HDL-C and particle size (α1-α3). The expression of the major HDL biogenesis genes Apoa1, Abca1, Lcat was not affected but there was significant increase in Apoc3 as well as in Hnf4g, a paralog of Hnf4a. RNA-sequencing identified metabolic pathways significantly affected by Hnf4a ablation such as type II diabetes, glycolysis, gluconeogenesis and p53 signaling. Chromatin immunoprecipitation assays showed that HNF4G bound to various apolipoprotein gene promoters in control mice but its binding affinity was reduced in the ileum of H4IntKO mice suggesting a redundancy but also a cooperation between the two factors. In the distal colon of H4IntKO mice, where both HNF4A and HNF4G are absent and in a mouse model of DSS-induced colitis presenting decreased levels of HNF4A, most lipoprotein genes were strongly downregulated. In conclusion, Hnf4a ablation in mice does not significantly affect serum lipid levels or lipoprotein gene expression in ileum possibly due to compensatory effects by its paralog Hnf4g in this tissue.


Asunto(s)
Regulación hacia Arriba
5.
Artículo en Inglés | MEDLINE | ID: mdl-34624513

RESUMEN

The inverse association between plasma HDL cholesterol (HDL-C) levels and risk for cardiovascular disease (CVD) has been demonstrated by numerous epidemiological studies. However, efforts to reduce CVD risk by pharmaceutically manipulating HDL-C levels failed and refused the HDL hypothesis. HDL-C levels in the general population are highly heterogeneous and are determined by a combination of genetic and environmental factors. Insights into the causes of HDL-C heterogeneity came from the study of monogenic HDL deficiency syndromes but also from genome wide association and Μendelian randomization studies which revealed the contribution of a large number of loci to low or high HDL-C cases in the general or in restricted ethnic populations. Furthermore, HDL-C levels in the plasma are under the control of transcription factor families acting primarily in the liver including members of the hormone nuclear receptors (PPARs, LXRs, HNF-4) and forkhead box proteins (FOXO1-4) and activating transcription factors (ATFs). The effects of certain lipid lowering drugs used today are based on the modulation of the activity of specific members of these transcription factors. During the past decade, the roles of small or long non-coding RNAs acting post-transcriptionally on the expression of HDL genes have emerged and provided novel insights into HDL regulation and new opportunities for therapeutic interventions. In the present review we summarize recent progress made in the genetics and the regulation (transcriptional and post-transcriptional) of HDL metabolism.


Asunto(s)
HDL-Colesterol/metabolismo , Lipoproteínas HDL/metabolismo , Hígado/metabolismo , ARN Largo no Codificante/genética , Factores de Transcripción Activadores/sangre , Factores de Transcripción Activadores/genética , HDL-Colesterol/sangre , HDL-Colesterol/genética , Factores de Transcripción Forkhead/sangre , Factores de Transcripción Forkhead/genética , Heterogeneidad Genética , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Lipoproteínas HDL/sangre , Lipoproteínas HDL/genética , Hígado/patología , ARN Largo no Codificante/sangre , Receptores Citoplasmáticos y Nucleares/sangre , Receptores Citoplasmáticos y Nucleares/genética
6.
Metabolism ; 127: 154954, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34875308

RESUMEN

INTRODUCTION: Atherosclerotic Coronary Artery Disease (ASCAD) is the leading cause of mortality worldwide. Novel therapeutic approaches aiming to improve the atheroprotective functions of High Density Lipoprotein (HDL) include the use of reconstituted HDL forms containing human apolipoprotein A-I (rHDL-apoA-I). Given the strong atheroprotective properties of apolipoprotein E3 (apoE3), rHDL-apoE3 may represent an attractive yet largely unexplored therapeutic agent. OBJECTIVE: To evaluate the atheroprotective potential of rHDL-apoE3 starting with the unbiased assessment of global transcriptome effects and focusing on endothelial cell (EC) migration as a critical process in re-endothelialization and atherosclerosis prevention. The cellular, molecular and functional effects of rHDL-apoE3 on EC migration-associated pathways were assessed, as well as the potential translatability of these findings in vivo. METHODS: Human Aortic ECs (HAEC) were treated with rHDL-apoE3 and total RNA was analyzed by whole genome microarrays. Expression and phosphorylation changes of key EC migration-associated molecules were validated by qRT-PCR and Western blot analysis in primary HAEC, Human Coronary Artery ECs (HCAEC) and the human EA.hy926 EC line. The capacity of rHDL-apoE3 to stimulate EC migration was assessed by wound healing and transwell migration assays. The contribution of MEK1/2, PI3K and the transcription factor ID1 in rHDL-apoE3-induced EC migration and activation of EC migration-related effectors was assessed using specific inhibitors (PD98059: MEK1/2, LY294002: PI3K) and siRNA-mediated gene silencing, respectively. The capacity of rHDL-apoE3 to improve vascular permeability and hypercholesterolemia in vivo was tested in a mouse model of hypercholesterolemia (apoE KO mice) using Evans Blue assays and lipid/lipoprotein analysis in the serum, respectively. RESULTS: rHDL-apoE3 induced significant expression changes in 198 genes of HAEC mainly involved in re-endothelialization and atherosclerosis-associated functions. The most pronounced effect was observed for EC migration, with 42/198 genes being involved in the following EC migration-related pathways: 1) MEK/ERK, 2) PI3K/AKT/eNOS-MMP2/9, 3) RHO-GTPases, 4) integrin. rHDL-apoE3 induced changes in 24 representative transcripts of these pathways in HAEC, increasing the expression of their key proteins PIK3CG, EFNB2, ID1 and FLT1 in HCAEC and EA.hy926 cells. In addition, rHDL-apoE3 stimulated migration of HCAEC and EA.hy926 cells, and the migration was markedly attenuated in the presence of PD98059 or LY294002. rHDL-apoE3 also increased the phosphorylation of ERK1/2, AKT, eNOS and p38 MAPK in these cells, while PD98059 and LY294002 inhibited rHDL-apoE3-induced phosphorylation of ERK1/2, AKT and p38 MAPK, respectively. LY had no effect on rHDL-apoE3-mediated eNOS phosphorylation. ID1 siRNA markedly decreased EA.hy926 cell migration by inhibiting rHDL-apoE3-triggered ERK1/2 and AKT phosphorylation. Finally, administration of a single dose of rHDL-apoE3 in apoE KO mice markedly improved vascular permeability as demonstrated by the reduced concentration of Evans Blue dye in tissues such as the stomach, the tongue and the urinary bladder and ameliorated hypercholesterolemia. CONCLUSIONS: rHDL-apoE3 significantly enhanced EC migration in vitro, predominantly via overexpression of ID1 and subsequent activation of MEK1/2 and PI3K, and their downstream targets ERK1/2, AKT and p38 MAPK, respectively, and improved vascular permeability in vivo. These novel insights into the rHDL-apoE3 functions suggest a potential clinical use to promote re-endothelialization and retard development of atherosclerosis.


Asunto(s)
Apolipoproteína E3/farmacología , Células Endoteliales/efectos de los fármacos , Lipoproteínas HDL/farmacología , Animales , Apolipoproteína E3/metabolismo , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Células Endoteliales/fisiología , Humanos , Proteína 1 Inhibidora de la Diferenciación/antagonistas & inhibidores , Proteína 1 Inhibidora de la Diferenciación/efectos de los fármacos , Proteína 1 Inhibidora de la Diferenciación/genética , Lipoproteínas HDL/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
7.
Metabolism ; 116: 154461, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33290761

RESUMEN

Atherosclerosis is a multifactorial disease influenced by genetics, lifestyle and environmental factors. Despite therapeutic advances that reduce the risk of cardiovascular events, atherosclerosis-related diseases remain the leading cause of mortality worldwide. Precise targeting of genes involved in lipoprotein metabolism is an emerging approach for atherosclerosis prevention and treatment. This article focuses on the latest developments, clinical potential and current challenges of monoclonal antibodies, vaccines and genome/transcriptome modification strategies, including antisense oligonucleotides, genome/base editing and gene therapy. Multiple lipid lowering biological therapies have already been approved by the FDA with impressive results to date, while many more promising targets are being pursued in clinical trials or pre-clinical animal models.


Asunto(s)
Aterosclerosis/terapia , Terapia Biológica/tendencias , Dislipidemias/terapia , Animales , Aterosclerosis/epidemiología , Terapia Biológica/métodos , Dislipidemias/epidemiología , Endocrinología/métodos , Endocrinología/tendencias , Humanos , Terapias en Investigación/métodos , Terapias en Investigación/tendencias
8.
Arch Biochem Biophys ; 696: 108655, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33130088

RESUMEN

High-Density Lipoprotein cholesterol (HDL-C) levels do not correlate well with Coronary Artery Disease (CAD) risk, while HDL functionality affects atherogenesis and is a better prognostic marker for CAD. Often, the extreme HDL-C levels have a multigenic origin. Here, we searched for single-nucleotide polymorphisms (SNPs) in ten genes of HDL metabolism in a Greek cohort with very low (<10th percentile, n = 13) or very high (>90th percentile, n = 21) HDL-C. We also evaluated the association between HDL-C levels, HDL functionality (anti-oxidant capacity) and CAD in the subjects of this cohort. Individuals with low HDL-C levels had higher triglyceride levels, lower apoA-I levels, decreased HDL anti-oxidant capacity and higher incidence of CAD compared with individuals with control or high HDL-C levels. With next generation sequencing we identified 18 exonic SNPs in 6 genes of HDL metabolism and for selected amino acid changes we performed computer-aided structural analysis and modeling. A previously uncharacterized rare apolipoprotein A-IV variant, apoA-IV [V336M], present in a subject with low HDL-C (14 mg/dL) and CAD, was expressed in recombinant form and structurally and functionally characterized. ApoA-IV [V336M] had similar α-helical content to WT apoA-IV but displayed a small thermodynamic stabilization by chemical unfolding analysis. ApoA-IV [V336M] was able to associate with phospholipids but presented reduced kinetics compared to WT apoA-IV. Overall, we identified a rare apoA-IV variant in a subject with low HDL levels and CAD with altered biophysical and phospholipid binding properties and showed that subjects with very low HDL-C presented with HDL dysfunction and higher incidence of CAD in a Greek cohort.


Asunto(s)
Apolipoproteínas A/genética , HDL-Colesterol/metabolismo , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Lipoproteínas HDL/metabolismo , Adulto , Apolipoproteínas A/química , Arildialquilfosfatasa/metabolismo , Estudios de Cohortes , Femenino , Grecia , Humanos , Masculino , Persona de Mediana Edad , Modelos Moleculares , Polimorfismo de Nucleótido Simple
9.
Metabolism ; 110: 154307, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32622843

RESUMEN

BACKGROUND: Aberrant concentration, structure and functionality of High Density Lipoprotein (HDL) are associated with many prevalent diseases, including cardiovascular disease and non-alcoholic fatty liver disease (NAFLD). Mice with liver-specific ablation of Hnf4α (H4LivKO) present steatosis and dyslipidemia by mechanisms that are not completely understood. The aim of this study was to explore the role of liver HNF4A in HDL metabolism and the development of steatosis. METHODS AND RESULTS: Serum and tissue samples were obtained from 6-weeks old H4LivKO mice and their littermate controls. Liver and serum lipids were measured and HDL structure and functionality were assessed. Global gene expression changes in the liver were analyzed by expression arrays, validations were performed by RT-qPCR and DNA-protein interactions were studied by chromatin immunoprecipitation (ChIP). H4LivKO mice presented liver steatosis, increased liver triglyceride content and decreased concentration of serum total cholesterol, HDL cholesterol, triglycerides, phospholipids and cholesteryl esters. Most classes of phospholipids showed significant changes in species ratio and sphingosine-1-phosphate (S1P) levels were reduced. H4LivKO serum was enriched in the smaller, denser HDL particles, devoid of APOA2 and APOM apolipoproteins, exhibiting decreased activity of paraoxonase-1 but retaining macrophage cholesterol efflux capacity and phospho-AKT activation in endothelial cells. Global gene expression analysis revealed the association of liver HNF4A with known and novel regulators of HDL metabolism as well as NAFLD-susceptibility genes. CONCLUSIONS: HNF4A ablation in mouse liver causes hepatic steatosis, perturbations in HDL structure and function and significant global changes in gene expression. This study reveals new targets of HNF4A involved in HDL metabolism and the development of steatosis and enriches our knowledge on HDL functionality in NAFLD.


Asunto(s)
Factor Nuclear 4 del Hepatocito/fisiología , Lipoproteínas HDL/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Transportador 1 de Casete de Unión a ATP/fisiología , Animales , Arildialquilfosfatasa/metabolismo , Perfilación de la Expresión Génica , Metabolismo de los Lípidos , Lipoproteínas HDL/química , Lisofosfolípidos/sangre , Ratones , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Esfingosina/análogos & derivados , Esfingosina/sangre
10.
Genomics ; 112(6): 4053-4062, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32652102

RESUMEN

The white adipose tissue (WAT) contributes to the metabolic imbalance observed in obesity and the metabolic syndrome (MetS) by mechanisms that are poorly understood. The aim of this study was to monitor changes in the transcriptome of epididymal WAT during the development of MetS. ApoE3L.CETP mice were fed a high fat (HFD) or a low-fat (LFD) diet for different time periods. Adipose RNA was analyzed by microarrays. We found an increasing number of differentially expressed transcripts during MetS development. In mice with MetS, 1396 transcripts were differentially expressed including transcripts related to immune/inflammatory responses and extracellular matrix enzymes, suggesting significant inflammation and tissue remodeling. The top list of pathways included focal adhesion, chemokine, B and T cell receptor and MAPK signaling. The data identify for the first time adipose gene signatures in apoE3L.CETP mice with diet-induced MetS and might open new avenues for investigation of potential biomarkers or therapeutic targets.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Síndrome Metabólico/genética , Algoritmos , Animales , Apolipoproteína E3/genética , Proteínas de Transferencia de Ésteres de Colesterol/genética , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Hígado/metabolismo , Redes y Vías Metabólicas/genética , Síndrome Metabólico/etiología , Síndrome Metabólico/metabolismo , Ratones Transgénicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Transducción de Señal
11.
Int J Obes (Lond) ; 43(12): 2394-2406, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31270430

RESUMEN

BACKGROUND/OBJECTIVES: The incidence of obesity and metabolic syndrome (MetS) has rapidly increased worldwide. Roux-en-Y gastric bypass (RYGB) achieves long-term weight loss and improves MetS-associated comorbidities. Using a mouse model with a humanized lipoprotein metabolism, we elucidated whether improvements in lipid and glucose metabolism after RYGB surgery are body weight loss-dependent or not. SUBJECTS/METHODS: Male ApoE*3Leiden.CETP (ApoE3L.CETP) mice fed Western type diet for 6 weeks underwent RYGB or Sham surgery. Sham groups were either fed ad libitum or were body weight-matched (BWm) to the RYGB mice to discriminate surgical effects from body weight loss-associated effects. Before and after surgery, plasma was collected to assess the metabolic profile, and glucose tolerance and insulin sensitivity were tested. Twenty days after surgery, mice were sacrificed, and liver was collected to assess metabolic, histological and global gene expression changes after surgery. RESULTS: RYGB induced a marked reduction in body weight, which was also achieved by severe food restriction in BWm mice, and total fat mass compared to Sham ad libitum mice (Sham AL). Total cholesterol, non-high-density lipoprotein cholesterol (non-HDL-C) and ceramide were strongly reduced 20 days after surgery in RYGB compared to BWm mice. Glucose tolerance and insulin sensitivity improved 13 days after surgery similarly in RYGB and BWm mice. Liver histology confirmed lipid reduction in RYGB and BWm mice while the transcriptomics data indicated altered genes expression in lipid metabolism. CONCLUSIONS: RYGB surgery improves glucose metabolism and greatly ameliorates lipid metabolism in part in a body weight-dependent manner. Given that ApoE3L.CETP mice were extensively studied to describe the MetS, and given that RYGB improved ceramide after surgery, our data confirmed the usefulness of ApoE3L.CETP mice after RYGB in deciphering the metabolic improvements to treat the MetS.


Asunto(s)
Peso Corporal/fisiología , Derivación Gástrica , Metabolismo de los Lípidos/fisiología , Pérdida de Peso/fisiología , Animales , Apolipoproteínas E/genética , Glucemia/metabolismo , Modelos Animales de Enfermedad , Ingestión de Alimentos/fisiología , Hígado/química , Hígado/fisiología , Masculino , Síndrome Metabólico/fisiopatología , Ratones , Ratones Transgénicos
12.
Oncogenesis ; 8(6): 36, 2019 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-31097694

RESUMEN

Transforming growth factor ß (TGFß) is deposited in the extracellular space of diverse tissues. Resident fibroblasts respond to TGFß and undergo myofibroblastic differentiation during tissue wound healing and cancer progression. Cancer-associated fibroblasts (CAFs) communicate with tumor cells during cancer progression, under the guidance of TGFß signaling. We report that agonist-activated liver X receptors (LXR) limit the expression of key components of myofibroblast differentiation, including the α-smooth muscle actin (αSMA) gene in liver cancer cells. CAFs derived from hepatocellular carcinoma (HCC) express high αSMA and low LXRα levels, whereas hepatocarcinoma cells exhibit an inverse expression pattern. All hepatoma cells analyzed responded to the LXRα agonist T0901317 by inducing fatty acid synthase (FASN) expression. On the other hand, T0901317 antagonized TGFß-induced fibroblastic marker responses, such as fibronectin and calponin, in a subset of hepatoma cells and all CAFs analyzed. Mechanistically, LXRα antagonized TGFß signaling at the transcriptional level. Smad3 and LXRα were recruited to adjacent DNA motifs of the ACTA2 promoter. Upon cloning the human ACTA2 promoter, we confirmed its transcriptional induction by TGFß stimulation, and LXRα overexpression repressed the promoter activity. Hepatosphere formation by HCC cells was enhanced upon co-culturing with CAFs. T0901317 suppressed the positive effects exerted on hepatosphere growth by CAFs. Taken together, the data suggest that LXRα agonists limit TGFß-dependent CAF differentiation, potentially limiting primary HCC growth.

13.
J Cell Physiol ; 234(11): 20485-20500, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31016757

RESUMEN

Long-term exposure to excess dietary fat leads to obesity and the metabolic syndrome (MetS). The purpose of the present study was to identify global changes in liver gene expression and circulating miRNAs in a humanized mouse model of diet-induced MetS. Male apoE3L.CETP mice received a high-fat diet (HFD) or a low-fat diet (LFD) for different time periods and the progression of MetS pathology was monitored. A separate group of mice was divided into responders (R) or nonresponders (NR) and received HFD for 16 weeks. We found that mice receiving the HFD developed manifestations of MetS and displayed an increasing number of differentially expressed transcripts at 4, 8, and 12 weeks compared with mice receiving the LFD. Significantly changed genes were functionally annotated to metabolic diseases and pathway analysis revealed the downregulation of genes in cholesterol and fatty acid biosynthesis and upregulation of genes related to lipid droplet formation, which was in line with the development of hepatic steatosis. In the serum of the apoE3L.CETP mice we identified three miRNAs that were upregulated specifically in the HFD group. We found that responder mice have a distinct gene signature that differentiates them from nonresponders. Comparison of the two diet intervention studies revealed a limited number of common differentially expressed genes but the expression of these common genes was affected in a similar way in both studies. In conclusion, the characteristic hepatic gene signatures and serum miRNAs identified in the present study provide novel insights to MetS pathology and could be exploited for diagnostic or therapeutic purposes.


Asunto(s)
Dieta Alta en Grasa , Hígado/metabolismo , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , Animales , MicroARN Circulante/genética , Dieta con Restricción de Grasas/efectos adversos , Dieta Alta en Grasa/efectos adversos , Grasas de la Dieta/metabolismo , Modelos Animales de Enfermedad , Hígado Graso/metabolismo , Perfilación de la Expresión Génica/métodos , Masculino , Ratones , Obesidad/metabolismo
14.
Noncoding RNA ; 5(2)2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30934986

RESUMEN

Cardiovascular disease (CVD) remains the leading cause of death worldwide and, despite continuous advances, better diagnostic and prognostic tools, as well as therapy, are needed. The human transcriptome, which is the set of all RNA produced in a cell, is much more complex than previously thought and the lack of dialogue between researchers and industrials and consensus on guidelines to generate data make it harder to compare and reproduce results. This European Cooperation in Science and Technology (COST) Action aims to accelerate the understanding of transcriptomics in CVD and further the translation of experimental data into usable applications to improve personalized medicine in this field by creating an interdisciplinary network. It aims to provide opportunities for collaboration between stakeholders from complementary backgrounds, allowing the functions of different RNAs and their interactions to be more rapidly deciphered in the cardiovascular context for translation into the clinic, thus fostering personalized medicine and meeting a current public health challenge. Thus, this Action will advance studies on cardiovascular transcriptomics, generate innovative projects, and consolidate the leadership of European research groups in the field.COST (European Cooperation in Science and Technology) is a funding organization for research and innovation networks (www.cost.eu).

15.
Int J Mol Sci ; 20(6)2019 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-30909560

RESUMEN

Apolipoprotein E (apoE) is mainly secreted by hepatocytes and incorporated into most plasma lipoproteins. Macrophages, which accumulate cholesterol and are critical for the development of the atherosclerotic plaque, are also an important, albeit smaller, apoE source. Distal regulatory elements control cell-specific activity of the apoE promoter: multienhancers (ME.1/2) in macrophages and hepatic control regions (HCR-1/2) in hepatocytes. A member of AP-1 cell growth regulator, c-Jun regulates the transcription of various apolipoproteins and proinflammatory molecules implicated in atherosclerosis. We aimed to investigate the effect of c-Jun on apoE expression in macrophages versus hepatocytes and to reveal the underlying molecular mechanisms. Herein we show that c-Jun had an opposite, cell-specific effect on apoE expression: downregulation in macrophages but upregulation in hepatocytes. Transient transfections using ME.2 deletion mutants and DNA pull-down (DNAP) assays showed that the inhibitory effect of c-Jun on the apoE promoter in macrophages was mediated by a functional c-Jun binding site located at 301/311 on ME.2. In hepatocytes, c-Jun overexpression strongly increased apoE expression, and this effect was due to c-Jun binding at the canonical site located at -94/-84 on the apoE proximal promoter, identified by transient transfections using apoE deletion mutants, DNAP, and chromatin immunoprecipitation assays. Overall, the dual effect of c-Jun on apoE gene expression led to decreased cholesterol efflux in macrophages resident in the atherosclerotic plaque synergized with an increased level of systemic apoE secreted by the liver to exacerbate atherogenesis.


Asunto(s)
Apolipoproteínas E/genética , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Macrófagos/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Animales , Elementos de Facilitación Genéticos , Hepatocitos/inmunología , Macrófagos/inmunología , Ratones , Modelos Biológicos , Regiones Promotoras Genéticas , Células RAW 264.7 , Factor de Transcripción AP-1/metabolismo
16.
Curr Med Chem ; 26(9): 1544-1575, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29532752

RESUMEN

The "HDL hypothesis" which suggested that an elevation in HDL cholesterol (HDL-C) levels by drugs or by life style changes should be paralleled by a decrease in the risk for Cardiovascular Disease (CVD) has been challenged by recent epidemiological and clinical studies using HDL-raising drugs. HDL components such as proteins, lipids or small RNA molecules, but not cholesterol itself, possess various atheroprotective functions in different cell types and accumulating evidence supports the new hypothesis that HDL functionality is more important than HDL-C levels for CVD risk prediction. Thus, the detailed characterization of changes in HDL composition and functions in various pathogenic conditions is critically important in order to identify new biomarkers for diagnosis, prognosis and therapy monitoring of CVD. Here we provide an overview of how HDL composition, size and functionality are affected in patients with monogenic disorders of HDL metabolism due to mutations in genes that participate in the biogenesis and the remodeling of HDL. We also review the findings from various mouse models with genetic disturbances in the HDL biogenesis pathway that have been generated for the validation of the data obtained in human patients and how these models could be utilized for the evaluation of novel therapeutic strategies such as the use of adenovirus-mediated gene transfer technology that aim to correct HDL abnormalities.


Asunto(s)
Apolipoproteína A-I/genética , Lipoproteínas HDL/metabolismo , Modelos Biológicos , Animales , Apolipoproteína A-I/metabolismo , Humanos , Lipoproteínas HDL/genética , Mutación
17.
Sci Rep ; 8(1): 14274, 2018 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-30250222

RESUMEN

We sought to identify circulating microRNAs as biomarkers of prevalent or incident diabetes. In a pilot study of 18 sex- and age-matched patients with metabolic syndrome, nine of whom developed diabetes during 6 years of follow-up, an array of 372 microRNAs discovered significantly elevated serum levels of microRNAs -122, -192, -194, and -215 in patients who developed diabetes mellitus type 2 (T2DM). In two cross-sectional validation studies, one encompassing sex- and age-matched groups of patients with T2DM, impaired fasting glucose (IFG) and euglycemic controls (n = 43 each) and the other 53 patients with type 1 diabetes and 54 age- and BMI-matched euglycemic controls, serum levels of miR-192, miR-194, and mi215 were significantly higher in diabetic subjects than in probands with euglycemia or IFG. In a longitudinal study of 213 initially diabetes-free patients of whom 35 developed diabetes during 6 years of follow-up, elevated serum levels of microRNAs 192 and 194 were associated with incident T2DM, independently of fasting glucose, HbA1c and other risk factors. Serum levels of miR-192 and miR-194 were also elevated in diabetic Akt2 knockout mice compared to wild type mice. In conclusion, circulating microRNAs -192 and -194 are potential biomarkers for risk of diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/sangre , Síndrome Metabólico/sangre , MicroARNs/sangre , Anciano , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Síndrome Metabólico/genética , Síndrome Metabólico/patología , Ratones , Ratones Noqueados , Persona de Mediana Edad , Proyectos Piloto , Estado Prediabético/sangre , Estado Prediabético/genética , Estado Prediabético/patología , Proteínas Proto-Oncogénicas c-akt/genética
18.
Metabolism ; 87: 36-47, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29928895

RESUMEN

BACKGROUND: High Density Lipoprotein (HDL) and its main protein component, apolipoprotein A-I (apoA-I), have numerous atheroprotective functions on various tissues including the endothelium. Therapies based on reconstituted HDL containing apoA-I (rHDL-apoA-I) have been used successfully in patients with acute coronary syndrome, peripheral vascular disease or diabetes but very little is known about the genomic effects of rHDL-apoA-I and how they could contribute to atheroprotection. OBJECTIVE: The present study aimed to understand the endothelial signaling pathways and the genes that may contribute to rHDL-apoA-I-mediated atheroprotection. METHODS: Human aortic endothelial cells (HAECs) were treated with rHDL-apoA-I and their total RNA was analyzed with whole genome microarrays. Validation of microarray data was performed using multiplex RT-qPCR. The expression of ANGPTL4 in EA.hy926 endothelial cells was determined by RT-qPCR and Western blotting. The contribution of signaling kinases and transcription factors in ANGPTL4 gene regulation by HDL-apoA-I was assessed by RT-qPCR, Western blotting and immunofluorescence using chemical inhibitors or siRNA-mediated gene silencing. RESULTS: It was found that 410 transcripts were significantly changed in the presence of rHDL-apoA-I and that angiopoietin like 4 (ANGPTL4) was one of the most upregulated and biologically relevant molecules. In validation experiments rHDL-apoA-I, as well as natural HDL from human healthy donors or from transgenic mice overexpressing human apoA-I (TgHDL-apoA-I), increased ANGPTL4 mRNA and protein levels. ANGPTL4 gene induction by HDL was direct and was blocked in the presence of inhibitors for the AKT or the p38 MAP kinases. TgHDL-apoA-I caused phosphorylation of the transcription factor forkhead box O1 (FOXO1) and its translocation from the nucleus to the cytoplasm. Importantly, a FOXO1 inhibitor or a FOXO1-specific siRNA enhanced ANGPTL4 expression, whereas administration of TgHDL-apoA-I in the presence of the FOXO1 inhibitor or the FOXO1-specific siRNA did not induce further ANGPTL4 expression. These data suggest that FOXO1 functions as an inhibitor of ANGPTL4, while HDL-apoA-I blocks FOXO1 activity and induces ANGPTL4 through the activation of AKT. CONCLUSION: Our data provide novel insights into the global molecular effects of HDL-apoA-I on endothelial cells and identify ANGPTL4 as a putative mediator of the atheroprotective functions of HDL-apoA-I on the artery wall, with notable therapeutic potential.


Asunto(s)
Proteína 4 Similar a la Angiopoyetina/biosíntesis , Apolipoproteína A-I/farmacología , Células Endoteliales/metabolismo , Proteína Forkhead Box O1/metabolismo , Lipoproteínas HDL/farmacología , Proteína Oncogénica v-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína 4 Similar a la Angiopoyetina/efectos de los fármacos , Proteína 4 Similar a la Angiopoyetina/genética , Animales , Proteína Forkhead Box O1/efectos de los fármacos , Proteína Forkhead Box O1/genética , Expresión Génica/efectos de los fármacos , Silenciador del Gen , Voluntarios Sanos , Humanos , Ratones , Ratones Transgénicos , Análisis por Micromatrices , Proteína Oncogénica v-akt/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , ARN Interferente Pequeño/farmacología
19.
Cell Signal ; 48: 54-63, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29705334

RESUMEN

We have shown previously that the small GTPases RhoA and RhoB play important roles in early TGFß-induced actin cytoskeleton reorganization and that RhoB is transcriptionally activated by TGFß and its signaling effectors, the Smad proteins. However, this long-term impact of RhoB gene upregulation by TGFß on cellular functions is not known. We now show that increased levels of RhoB, but not of RhoA, inhibit the TGFß/Smad-mediated transcriptional induction of the cell cycle inhibitor p21WAF1/Cip1 gene as well as of a generic Smad-responsive promoter suggesting that RhoB could be part of an auto-inhibitory loop in TGFß signaling by inhibiting the genomic responses to TGFß. We show that RhoB blocks the interaction of Smad3 with the type I TGFß receptor which prohibits its phosphorylation by this receptor and its translocation to the nucleus. Using in vivo GST pull-down and co-immunoprecipitation assays we show that Smad3 physically interacts with RhoB but not with RhoA. We show that RhoB, but not RhoA, potently regulates actin cytoskeleton reorganization by inducing stress fiber formation in a Smad-dependent manner. Finally we show that Smad3 downregulates the expression of the epithelial adherens junctions protein E-Cadherin and upregulates the fibronectin gene in Smad3-/- JEG3 cells only in the presence of RhoB suggesting that RhoB/Smad3 complexes in the cytoplasm may be involved in epithelial to mesenchymal transitions. In summary, our data propose a novel mechanism of TGFß/Smad signaling modulation by the small GTPase RhoB and show that this TGFß/RhoB signaling cross talk affects the nuclear and cytoplasmic responses to TGFß in opposite ways.


Asunto(s)
Proteína smad3/genética , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/genética , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoB/fisiología , Células 3T3 , Citoesqueleto de Actina/metabolismo , Animales , Antígenos CD/metabolismo , Cadherinas/metabolismo , Línea Celular Tumoral , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Células HEK293 , Humanos , Ratones , Fosforilación , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
20.
Cell Mol Life Sci ; 75(12): 2111-2124, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29500478

RESUMEN

Rho GTPases are highly conserved proteins that play critical roles in many cellular processes including actin dynamics, vesicular trafficking, gene transcription, cell-cycle progression, and cell adhesion. The main mode of regulation of Rho GTPases is through guanine nucleotide binding (cycling between an active GTP-bound form and an inactive GDP-bound form), but transcriptional, post-transcriptional, and post-translational modes of Rho regulation have also been described. In the present review, we summarize recent progress on the mechanisms that control the expression of the three members of the Rho-like subfamily (RhoA, RhoB, and RhoC) at the level of gene transcription as well as their post-transcriptional regulation by microRNAs. We also discuss the progress made in deciphering the mechanisms of cross-talk between Rho proteins and the transforming growth factor ß signaling pathway and their implications for the pathogenesis of human diseases such as cancer metastasis and fibrosis.


Asunto(s)
Regulación de la Expresión Génica , MicroARNs/genética , Activación Transcripcional , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoB/genética , Proteína rhoC de Unión a GTP/genética , Animales , Humanos , MicroARNs/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Proteína de Unión al GTP rhoB/metabolismo , Proteína rhoC de Unión a GTP/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...